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ABSTRACT

A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program
SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex

network. The flow code is capable of modeling several physical phenomena including compressibility

effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for

multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective
heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper
describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat

transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface

development will be addressed in a later paper. Phase 1 development has been benchmarked to an
analytical solution with excellent agreement. Additional test cases for each development phase demonstrate
desired features of the interface. The results of the benchmark case, three additional test cases and a

practical application are presented herein.

INTRODUCTION

Accurate conjugate heat transfer predictions for complex situations require both proper modeling of the
solid and flow networks and realistically modeling the interaction between these networks. Proper

modeling of the solid network can be easily performed using either classical analytical techniques or with
established numerical model tools, such as SINDAJG. Proper modeling of the flow network, however,

requires a numerical tool that account for multiple different flow paths, a variety of flow geometries, an

ability to predict flow reversal, the ability to account for compressibility effects and ability to predict phase

change.

THERMAL CODE

SINDA/G l _ystems Improved Numerical Differencing Analyzer / Gaski) is a code that solves the diffusion

equation using a lumped parameter approach. The code was developed as a general purpose thermal

analysis program which uses a conductor-capacitor network to represent a physical situation; however,
SINDA can solve other diffusion type problems. The code consists of two components: a preprocessor and

a library. The library consists of a series of subroutines necessary to solve a wide variety of problems. The

preprocessor converts the input model deck into a driver FORTRAN source code, complies and links with

the library, then executes the model and generates an output file. One of the main advantages of SINDA
over other thermal codes is that it accepts FORTRAN statements, developed by the user, in the input deck



whichallowtheuserto tailorthecodeto suitaparticularproblem.It is thisabilitytoaddFORTRAN
codingto theSINDAinputdeckwhicheasilyallowsforaninterfacewithothercodes,specificallyin the
caseathand,ageneralpurposefluidnetworkflowcode.

FLUID CODE

The Generalized Fluid System Simulation Program 2 (GFSSP) was developed for the Marshall Space Flight

Center's Propulsion Laboratory for the purpose of calculating pressure and flow distribution in a complex

flow network associated with secondary flow in a liquid rocket engine turbopump. The code was developed

to be a general purpose, one-dimensional flow network solver so that generic networks could be modeled.

Capabilities of the GFSSP are summarized below:

• Modeling flow distributions in a complex network;

• Modeling of compressible and incompressible flows;

• Modeling real fluids via embedded thermodynamic and thermophysical properties routines and tables;

• Mixing calculation of real fluids;

• Phase change calculation of real fluids;

• Axial thrust calculations for turbopumps;

• Calculation of buoyancy driven flows;

• Calculation of both steady and unsteady flows (both boundary conditions and geometry can vary with

time);

• Choice of first or second law approach to solving the energy equation.

• A series of user subroutines allow for modification to specific equations and specialize input and output

as desired by the user.

The GFSSP uses a series of nodes and branches to define the flow network. Nodes are positions within the

network where fluid properties (pressure, density, etc.) are either known or calculated. Branches are the

portions of the flow network where flow conditions (geometry, flow rate, etc.) are known or calculated.

The code contains 18 various branch options to model different geometries. These branch options include
classical pipe flow with and without end losses, flow with a loss coefficient, non-circular duct, thick orifice,

thin orifice, square expansion, square reduction, face seal, labyrinth seal, valves and tees, pump using pump

characteristics, pump using horsepower and efficiency, and a Joule-Thompson device.

The GFSSP has additional options including the ability to model gravitational effects, rotation, fluid
mixture, a turbopump assembly, the ability to add mass, momentum and heat sources at any appropriate

point in the model, and the ability to model multidimensional flow (two and three dimensional flow field

calculation).

The GFSSP uses a finite volume approach with a staggered grid. This approach is commonly used in
computational fluid dynamics schemes (Patankar 3, Patankar and Karki4).

OVERVIEW OF SOLID/FLUID INTERFACE

In order to run the two codes concurrently, GFSSP was converted into a subroutine called from an interface

subroutine. Figure 1 schematically illustrates the interface call sequence. This interface subroutine, called

from SINDA, uses the surface temperature and area of the adjacent solid node along with the flowrate and

upstream temperature of the adjacent fluid branch to calculate the heat exchange between the solid and
fluid. The interface routine calculates, or has specified, the convective heat transfer coefficient (h). The
interface subroutine calculates and distributes the heat back to the solid node and to the downstream fluid

node using a technique called "upwinding." Upwinding models the effect of heat addition to the fluid
manifesting downstream of the point of the addition, from a bulk flow perspective. This technique is

commonly used in CFD codes to model fluid inertia. Figure 2 illustrates the convective heat transfer
calculation scheme.



SINDA/G
Calls Interface
Subroutine In
VARIABLES1

Figure 1: SINDA - GFSSP Interface

T

TSi,

Legend

[] -- Fluid Internal Node I-_ -- Solid Internal Node

D_ Fluid Boundary Node
_ -- Solid Boundary Node

-- Fluid Branch

Figure 2: Convective Heat Transfer Scheme Within The SINDA - GFSSP Interface

From the point of view of the two codes involved, therefore, only heat sources/sinks are added at discrete
nodes and these heat sources/sinks are updated with every SINDA iteration (for steady state models) or time

step (for unsteady models).

The interface is generalized so that the solid and fluid models can have different levels of discretization,

resulting in three different scenarios: multiple solid nodes for a given fluid branch, one solid node for a

given fluid branch, and one solid node for multiple fluid branches. These three scenarios are illustrated in

Figure 3.
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Figure 3: Possible Solid/Fluid Discretization Scenarios

The GFSSP common block has been placed into the interface subroutine to allow the user to update the

fluid network at every iteration/time-step via this subroutine. The number of solid nodes that connect to the
fluid network, the names, temperatures, areas exposed to the fluid network and corresponding heat sources

are passed back and forth from SINDA/G and the interface subroutine.

STEADY STATE AND QUASI STEADY MODELING

BENCHMARKING

In order to debug and validate the interface, a simple textbook example was chosen as a benchmark case.
The benchmark case is a circular rod between two walls with convective heat transfer. The walls are held at

32°F and 212°F, respectively. The rod has a thermal conductivity of 9.4 BTU/ft-hr°R (2.611x10 3 BTU/ft-

sec°R). The convective heat transfer coefficient between the rod and the fluid is 1.14 BTU/ft2hr°R

(3.167x10 "4 BTU/ft2sec°R), with the fluid temperature set at 70°F. The rod has a diameter of 2.0 inches

(0.167 ft) and has a length of 2.0 ft.

The SINDA/G model consists of 10 nodes - 8 diffusion nodes and 2 boundary nodes. The GFSSP model

consists of 5 nodes - 3 internal nodes and 2 boundary nodes - and 4 branches. For every four nodes in the

solid model, a corresponding fluid branch is assigned. Water was chosen as the working fluid with a

sufficient pressure differential between the boundary nodes to supply a flowrate that would allow for an

approximately constant temperature without appreciable temperature rise due to shear. The convection
coefficient was provided directly to the interface so as to make a direct comparison to an analytical solution.

The benchmark case and combined model is shown schematically in Figure 4.
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Figure 4: SINDA/G - GFSSP Benchmark Case

The closed form solution of the benchmark case is given in Equation 1, below, and derived in the Thermal

Analysis Workbook 5.

T(x) = Tnuid + 4.653e 1"714x - 42.650e -t'714x (])

where, x = distance from the cold wall in feet and

Tfluid -- 70°F.

The results of the benchmark combined models are shown with the analytical solution in Figure 5 below.

As Figure 5 illustrates, the SINDA/G - GFSSP interfaced prediction lies on the curve of the analytical

solution, thus providing a first level validation of the interface.
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STEADY AND QUASI-STEADY ADDITIONAL TEST CASES

In order to exercise the interface between SINDA/G and GFSSP, three additional test cases were identified

which exploit different aspects of the interface.

The goal of the first of the additional test cases (the second test case) was to predict phase change in the
fluid model due to heat transfer to the solid. In this case, steam at 215°F and 14.705 psia enters a flow path

and flows over a solid bar and exits at 14.700 psia. The back face of the bar is held at 32°F. For simplicity,
the convective heat transfer coefficient is set in the interface at a constant value (3.167x10 3 BTU/ft2sec°R,

an order of magnitude higher than the benchmark case). It should be noted that. Figure 6 illustrates the

physical situation and the SINDA/G - GFSSP combined models. The results of the modeling effort for case

2 is shown in Figures 7 and 8. Figure 7 illustrates the temperature profile for both the solid and the fluid.

Note that the temperature of the fluid remaining constant during the phase change. Figure 8 illustrates the

quality of the fluid as a function of location downstream of the inlet. The fluid temperature is superimposed
on this figure to show the constant temperature during the phase change.

Steam In Water Out

(Ta=d ir_t :

32°F

Physical Situation
Case 2 SINDA-GFSSP Model

Legend Ir_l-- Ftu_l Boundary Node _= .

Figure 6: Test Case Two - Physical Situation and Combined Models
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Figure 8: Test Case Two - Fluid Quality vs. Location

The goal of the second of the additional test cases (the third test case) was to control the area of an orifice

using a temperature supplied by SINDA/G. In this case, a metal bar is bounded by two fluid streams (one

cold, the other hot) in steady state operation as illustrated in Figure 9, below. The bar is 0.25 feet thick,

with a thermal conductivity of 18.8 BTU/ft-hr°R (5.22x10 3 BTU/ft-sec°R). The bar has been descretized

into 35 solid nodes. The cold fluid stream consists of water entering at boundary node 1 with boundary

conditions of 70°F and 45.5 psia, and exiting at boundary node 8 with a boundary pressure of 45.0 psia.



The cold stream entrance branch (branch 12) is an orifice with a cross-sectional area of 0.25 square inches
and loss coefficient of 0.6. The remainder of the cold stream has a cross-sectional area of 0.5 square inches.

The hot stream consists of steam entering at boundary node 11 with boundary conditions of 250°F and

14.75 psia, and exiting at boundary node 18 with a boundary pressure of 14.70 psia. The hot stream
entrance branch (branch 1112) is an orifice whose area is a function of the temperature of the adjacent solid

node (node 105). The functional relationship between the orifice cross-sectional area and solid node

temperature is provided in Equation 2, below.

Aonnc e = 0.15+ [0.01 * (Tsotid - 155.0)]

where, A = Area in square inches

T = Temperature in °F

(2)
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Figure 9: Test Case Three - Physical Situation and Combined Models

For simplicity, the heat transfer coefficient for each stream was set at a constant value: 5.0x10 "3
BTU/ftZsec°R for the cold stream and 2.5x10 3 BTU/ft2sec°R for the hot stream. The results of the modeling

effort for case 3 are shown in Figures 10 and 11. Figure 10 illustrates the temperature profile in the bar at
the fluid entrance location (solid nodes 101-105), midline (solid nodes 116-120) and fluid exit location

(solid nodes 131-135). Figure 11 illustrates the convergence characteristics of the area for fluid branch
1112 as a function of the solid model iteration.
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Thefinal additional test case (test case four) had the goal of a "quasi-steady" operation in which the SINDA

model is run in an unsteady mode, and the time step controls the boundary conditions of the fluid loop

operating in steady state mode. The physical situation modeled is nearly identical in geometry to test case
three, except that the fluid networks' geometries remain constant (i.e. area of branch 1112 is 0.15 in 2 and

not a function of the temperature of solid node 105). The metal bar is initially at an uniform temperature of

155°F. The cold fluid stream boundary node 1 is initially at 70°F and 45.5 psia; whereas, the cold fluid

stream boundary node 8 pressure is set at 45.0 psia. The hot fluid stream boundary node 11 is initially at
250°F and 14.75 psia; whereas, the hot fluid stream boundary node 18 pressure is set at 14.70 psia. The

thermal conductivity and convective heat transfer coefficients are the same as used in test case three. The
total model run time is 20 hours, with the first 10 hours used to establish a steady state prediction. After 10

hours, the inlet temperature of the two fluid boundary nodes (fluid nodes 1 and 11) become a function of

time. Equations 3 and 4 provide the functional relationship between temperature and time for fluid nodes 1
and 11, respectively. Figure 12 illustrates the physical situation and combined models.

=I 70°F
T1 [10t (°F)

(3)

= / 250 ° F
TI1 (280-4t (°F)

(4)

where, T = Temperature in °F
t = time in hours
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Figure 12: Test Case Four - Physical Situation and Combined Models

The results of the modeling effort for case 4 are shown in Figures 13 and 14. Figure 13 illustrates the

temperature/time profile for three solid nodes (116, 118, and 120) and the two inlet fluid boundary nodes.



Figure14illustratesthetemperatureprofileinthebarforsolidnodes116- 120atseveraltimesteps.These
figuresillustratethesolidtemperaturefollowingtheinletfluidtemperature.
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PRACTICAL APPLICATION

The steady interface test cases verified that the interfaced worked as desired; however, they did not
illustrate a thermal-fluid problem of interest to the analytical community. The purpose of this example is to

illustrate how the interface was used in an actual application. The problem of interest is a microgravity

furnace that has a cooling jacket. The jacket is meant to keep the temperature on the outside of the furnace

within a specified limit. The jacket uses water as the working fluid. Of interest in this problem is the
connection of the SINDA thermal model of the furnace to the GFSSP fluid model of the cooling jacket.

As illustrated in the figure below,.

FUTURE WORK - FULL UNSTEADY MODELING

Development is currently underway for fully unsteady modeling in which the time step for the fluid model

may be different than that of the solid model. The current steady state capability, applicable to forced
convection only, can be easily extended to full transient modeling; however, additional modeling aspects
are desired.

In addition transient forced convection, features of the updated interface include:

• Solid node to fluid node identification for free convection and solid to fluid conduction (loss of

cooling).

• Embedded Nusselt number correlations, with user overwrite capability.

• User overwrite capability for forced convective heat transfer coefficient.

• Embedded subroutines for actual to relative (and relative to actual) fluid node numbering, branch

numbering, defined and actual up- and downstream nodes for a branch.

CONCLUSIONS

A general purpose fluid network code has successfully been interface with a general purpose thermal

analysis code for steady flow models and both steady and unsteady thermal models. A benchmark case was
identified, combined models (one thermal, one fluid) were constructed and executed. The steady state

predictions from the combined benchmark models provided an accurate prediction of the temperature

profile in the solid when compared to the analytical, closed form solution. Additional cases demonstrated
fluid phase prediction and control of the fluid model by the solid model's information via the interface
subroutine. The
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